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ABSTRACT

Hardwood sawmill operators need to improve the
conversion of raw material (logs) into lumber.  Internal
log scanning provides detailed information that can aid
log processors in improving lumber recovery. However,
scanner data (i.e. tomographic images) need to be
analyzed prior to presentation to saw operators.
Automatic labeling of computer tomography (CT)
images is feasible, but no research has established
labeling accuracy or demonstrated real time operation.
An automated labeling scheme is presented in this paper
that is both very accurate and very fast.  The procedure
segments and classifies each pixel in a CT image as
either knot, split, bark, decay, or clear wood by using a
small 3D pixel neighborhood as input to an artificial
neural network classifier.  Initial results with two
species of oak and with yellow poplar indicate that
species-dependent classifiers of this type can be
constructed.  This classification approach can also be
applied to other types of images encountered in
industrial inspection applications, e.g., gray-scale and
color images.
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INTRODUCTION

Knowledge of internal log defects, obtained by
scanning, is a critical component of efficiency
improvements for future mills (Occeña 1991).  Studies
(Richards and others 1980, Tsolakides 1969, Wagner
and others 1990) have demonstrated potential value
gains of 11%, 14%, and 21%, respectively, that can be
achieved by sawing logs under different log orientations
and using different sawing methods.  A basic
assumption for the application of nondestructive
evaluation to log sawing is that knowledge of internal
defects will lead to choice of the best sawing position
and method, and therefore will allow mills to realize
these potential value gains.

Before computer tomography (CT) scanning or any
other type of internal log scanning can be applied in
industrial operations, there are several hurdles that must
be overcome.  First, there needs to be some way to
automatically interpret scan information so that it can
provide the saw operator with the information needed to
make proper sawing decisions.  For the purposes of
sawing the log cylinder into high-value boards, this
means accurately locating, sizing, and labeling internal
defects.  Second, this defect recognition procedure must
operate at real time speeds, so that scanning, image
reconstruction, and image interpretation and display can
be integrated into mill processing.  Third, a 3D display
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of a log and its defects for the sawyer is only the first
step toward real efficiency.  Eventually, the sawyer must
be guided by computer-analyzed suggestions for the best
log breakdown sequence, or have the sawing completely
controlled by computer processing.

The work described here addresses the first and
second of these processing needs.  The next section
discusses previous work on these topics.  This is
followed by a general description of the neural-net based
classification technique that we have developed.
Following a description of our experimental methods,
performance results are given, including a qualitative
comparison with previous approaches.  The final section
contains conclusions that we have drawn from this
work, and some directions for further research.

PREVIOUS WORK

Because most defects of interest are internal, a
nondestructive sensing technique is needed which can
provide a 3D view of a log’s interior.  Several different
sensing methods have been tried, including nuclear
magnetic resonance, ultrasound, and x-ray.  Due to its
efficiency, resolution, and widespread application in
medicine, x-ray computed tomography has received
extensive testing for roundwood applications (e.g., Funt
and Bryant 1987, Som and others 1992, Zhu and others
1991b).  As noted above, however, CT images require
computer analysis before they can be useful in an
industrial setting.

Previous work on automatically labeling internal
log defects established the feasibility of utilizing CT
images.  These researchers employed a variety of
methods to segment different regions of a CT image and
then to interpret, or label, those segmented regions.
Often, image segmentation methods are based on
threshold values derived from image histograms (Som
and others 1992, Zhu and others 1991b).  Texture-based
techniques have been applied to defect labeling only
(Funt and Bryant 1987, Zhu and others 1991a), not
segmentation.  Knowledge-based classification (Zhu
1993), shape examination (Funt and Bryant 1987, Som
and others 1992), and morphological operations (Som
and others 1992) have been used to label defects, also.

While previous efforts have demonstrated
feasibility, they have some serious limitations.  First,
reports of defect labeling accuracy are often either
anecdotal, based on success in a training set, or based
on a single test set.  No statistically valid estimates of
labeling accuracy can be found in the literature.  Second,
there has been no effort to assess or to achieve real-time
operability of the developed algorithms.  Third, texture
information is critical for human differentiation of
regions in CT images (i.e. image segmentation), and

automated recognition algorithms should exploit this
fact for computer-based processing.

These limitations are addressed by a new approach
described below.  In contrast to global approaches that
separate the tasks of segmentation and region labeling,
our approach operates using local pixel neighborhoods
primarily, and combines segmentation and labeling into
a single classification step using a feed-forward artificial
neural network (ANN). To accommodate different types
of hardwoods, a histogram-based preprocessing step
normalizes CT density values prior to ANN
classification.  Morphological postprocessing is used to
refine the shapes of detected image regions.  These steps
are described in the next section.

METHODS

The CT image interpretation system that has been
developed here consists of three parts: (1) a
preprocessing module, (2) a neural-net based classifier,
and (3) a post-processing module.  The preprocessing
step separates wood from background and internal voids,
and normalizes density values.  The classifier labels
each non-background pixel of a CT slice using
histogram-normalized values from a 3×3×3 window
about the classified pixel.  Morphological operations are
performed during post-processing to remove spurious
misclassifications.

Preprocessing - Background Thresholding

The first objective of preprocessing is to identify
background regions, so that these regions can be ignored
by the classifier.  Our initial approach was to extract
histograms for individual CT slices and apply Otsu’s
thresholding method (Otsu 1979).  This method
assumes bimodal histograms, and minimizes within-
group variance.  In our application, it automatically
determines a correct threshold for many CT log images
(Figure 1), because the histograms are typically
bimodal.  The two peaks can be found at very low gray-
level values (background) and at relatively high CT
values, corresponding to clear wood and high-density
areas, such as knots and bark.  Figure 2 illustrates this
with a histogram of densities for the CT slice shown in
Figure 1.

Unfortunately, one of the defect types–decay–has
density values which are roughly the average of
background (air) and clear wood density values.  This
appears as a small peak in Figure 2, near the midpoint
of the two larger peaks.  If Otsu’s method is applied
directly to this histogram, the threshold indicated by t1
is detected, causing decay regions to be treated as
background.  We address this problem by weighting the
histogram values, using the function
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w( t) = 1 − e
− (

t − t1
b

)2

                  ( 1 )

where t1 is the threshold determined by applying Otsu’s
method initially, and b = 2000.  This value for b was
chosen experimentally.  When Otsu’s method is applied
to the resulting histogram, the threshold t2 is found,
which successfully distinguishes decay from
background.  This method has been tested using a large
number of CT samples.  The weighting function
modifies histogram values only for the purpose of
determining a threshold value for background pixels.
The original pixel CT values are not modified in this
step.

Figure 1.  Different densities are depicted by different
gray-level values in this computer-generated x-ray
tomograph of a red oak log.  The slice shown here
contains 256 × 256 elements, each corresponding to a
volume of 2.5 × 2.5 × 2.5 mm3.

Preprocessing - Density Normalization

The second objective of preprocessing is to
normalize CT values, so that the classification step can
work with different types of wood.  Normalization is
especially important because neighborhood pixel values
are used as features by the classifier.  If pixel values are
not normalized there will be no consistent relationships
among similar regions across CT images, and the ANN
classifier will be unable to learn any patterns.

All hardwood CT histograms that we have
examined have the characteristics of the histogram in
Figure 2.  That is, there is a large peak of background
pixel values at the far left, a large peak of clear wood,
bark, and knot pixel values at the far right, and decay
pixel values (if present) located at approximately the
midpoint of the clear wood values.

To ensure consistency of defect region values across
images, we want to be able to do several things with
any histogram of CT density values.  First, we want to

shift the rightmost peak–containing clear wood, bark,
and knot values–so that these regions always have the
same values and so that the shape of this peak does not
change.  Second, we want the lower CT values,
representing background, to remain about the same
following the transformation, so that zero values stay
near zero.  Third, we want the CT values between the
leftmost and rightmost peaks for each original histogram
to have the same relative position in a transformed
histogram.  This type of transformation will give the
important regions of any CT image the same density
values, and allow us to apply our pixel-value dependent
classifier to those normalized values.

Figure 2.  Background pixels produce a very large peak
in this histogram, part of which is omitted from the
figure to improve clarity.  The t1 threshold is obtained
using Otsu’s method directly; t2 is obtained after
introducing a weighting function to the histogram.

The method used here applies a transformation to
each CT value in the image.  The transformation
includes two components: (1) a variable translation
component and (2) normalization by an arbitrary
parameter.  The transformation function is given in Eq.
2.

x t =
x o + f (xo ; xcw )(xa − x cw)

x a

          (2)

where

xt transformed CT value

xo original CT value

xcw original CT value of clear wood peak

xa arbitrary translation anchor value, greater

than the CT value of the clear wood peak

f translation multiplier

The translation anchor xa is an arbitrary parameter
selected to be greater than the CT value of the clear
wood peak.  The rightmost histogram peak (including
clear wood, knot, and bark values) will be shifted to the
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right by the amount xa-xcw, so that the clear wood peak
is now at xa.  The resulting values are normalized by xa
so that the clear wood peak of a normalized histogram is
always located at 1.  In order for the translation of the
rightmost peak to be consistent for all histograms it is
necessary for the translation anchor value to be the same
for all histograms.  Otherwise, the shape of the
rightmost peak will change with respect to the range of
transformed density values.  Greater details of this
histogram normalization procedure can be found in
Schmoldt and others (1995).

A Neighborhood-Based Neural-Net Classifier

A multilayer feed-forward neural network is used to
perform the primary classification step.  There were two
initial goals in this research: (1) to determine if the tasks
of segmentation and region labeling could be combined
into a single step and (2) to determine whether an ANN
classifier could perform well using only simple features
obtained from local neighborhoods.  Aside from the
initial background thresholding, both segmentation and
defect labeling are performed simultaneously by the
classifier.

Each histogram-normalized value in a 3×3×3
neighborhood about the target pixel serves as an input
to the ANN.  One additional input is the “radius” of the
element under consideration, which is the distance of the
target pixel from the centroid of the foreground region of
the CT slice.  This distance measure provides
contextual information that aids in classification.  Some
entities (such as splits) tend to lie near log centers and
others (such as bark) lie near the outside edge of the log.
Gross splits can be identified by background
thresholding.  Narrower splits are subresolution and
must be classified by the ANN using local
neighborhood information.  There are 5 output nodes of
the ANN, one for each of the classes to be detected:
knot, split, bark, decay or clear wood.  The class
associated with the output node that has the largest
value is selected as the classification.

The network was trained using the conventional
back-propagation method.  Because network topology
has a large impact on classification accuracy and on
convergence time during training, several topologies
were compared.  Networks using one, two, and three
hidden layers were generated, with the total number of
weights for each network topology kept constant (Özkan
and others 1993).

At this date, the image interpretation system has
been trained using only two hardwood species, northern
red oak (Quercus rubra, L.) and water oak (Quercus
nigra, L.).  The training/testing example set was
selected from multiple CT slices and consists of 1973
samples.  Ten-fold cross-validation was used to estimate
the true accuracy rate of the ANN classifier.

Postprocessing

Because local neighborhoods are the primary source
of classification features that are used by the ANN,
spurious misclassifications tend to occur at isolated
points.  A post-processing procedure is used to remove
small regions, thereby improving overall classification
accuracy.  This method is effective since the defects of
interest typically have relatively large sizes in an image.
We chose to use the gray-scale operations of erosion
followed by dilation for this purpose.  A 3×3 structuring
element is used for both operations.  An added benefit is
that labeled region borders are smoothed somewhat
during this process.

RESULTS

Four different ANN topologies were trained/tested
using ten-fold cross-validation.  The results are shown
in Table 1.  The ANN with two hidden layers exhibited
the best performance with an accuracy of just under 95%
for pixel classification.  The next best classifier, with a
single hidden layer of 12 nodes, exhibited practically the
same classification accuracy.  Because the latter network
requires much less processing time, it was chosen as the
optimal classifier among those evaluated.  It is
interesting to note that classification performance
decreased slightly as the number of hidden layers
increased.

Network
topology

Number
of

weights

Number of
training

iterations

Classificatio
n accuracy

28-12-5 396 6699 0.947795

28-10-8-5 400 8299 0.949316

28-7-16-5 388 10499 0.939686

28-8-8-8-5 392 60499 0.853523

Table 1.  Network performance varies with topology.

The chosen classifier has been applied to two CT
images for illustration (Figure 3).  As anticipated, the
ANN produces some isolated pixel misclassifications, as
shown in the middle column of the figure.  The
classification regions are improved with post-processing,
however, as shown at the right.  In the second example
of Figure 3, for example, the ANN classified partial
regions of several growth rings as split defects; these
were removed by subsequent postprocessing.  In the first
example in that figure, incorrect labels near the border of
the CT slice are removed by postprocessing steps.
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The image interpretation system is currently
implemented on a desktop computer containing a
33MHz processor.  Analysis of a single 256×256 CT
slice requires about 25 seconds.  This is considerably
faster than the previous approach (Zhu 1993) which
requires 9 minutes of processing time on a VAX
11/785.  Because the algorithms are implemented in C,
however, they can be transported easily to any other
computer hardware.

In comparison to previous hardwood log inspection
systems, our system has a simple implementation, but
high classification speed and accuracy.  Other systems
are reported to be able to successfully identify or locate
some internal defects, but few statistical results are
available.  Most previous work is limited to 2D image
analysis, which does not make full use of the 3D nature
of CT images.  Finally, most research has dealt with a
single type of wood, whereas our approach successfully
deals with two different wood species.

CONCLUSIONS

In general, the ANN classifier, operating primarily
with local, pixel values, is able to classify regions of
CT images with 95% accuracy at the pixel level.
Postprocessing improves this value considerably, but
we do not have an exact numerical estimate for this
improvement.  Most regions are detected and correctly
labeled; however, in some cases the classifier fails to
correctly size defects.  It is possible that by the addition
of further postprocessing, e.g., high-level, rule-based
analysis of defect regions, we may be able to size defects
more accurately and to remove any remaining
misclassified regions.

As noted above, the entire classification operation
requires only about 25 seconds on the current hardware.
By using newer RISC-based hardware, this defect
recognition time can be reduced drastically, by a factor
of 8-10.  This places defect recognition speed on a par
with scanning and image reconstruction times.  Because
each of these 3 operations takes 2-3 seconds, they can be
performed in parallel on successive slices.  Therefore,
this defect recognition technique can easily be
implemented in real time as logs are scanned and
images reconstructed.

Because of the success of the trained ANN classifier
on oak samples, we feel confident that we can develop
species-dependent classifiers that are very accurate.  It is
not clear, however, whether we will be able to create a
classifier that is entirely independent of species.  Should
a generalized classifier prove to be infeasible, species-
dependent classifiers can still be useful in actual mill
operations because typically a single species is sawn
over an extended period.

Although we have limited our investigations to 3D
CT images of hardwood logs, it appears that the image
analysis methods described here can extend to other
applications and data types.  Initial results using a 2D
classifier produced only slightly lower classification
accuracy than using 3D data.  Therefore, we feel that the
same approach will work well with gray-scale video
images, sonograms, and other 2D data types.  For
applications involving color video images, it should be
possible to treat the red, green, and blue images as
separate “slices” which provide input to the ANN.
Depending on the application, the ANN may produce
final classification, or it may transmit information to a
subsequent processing stage for higher-level analysis.
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